
Swipe to next page

Generative UI
The 2026 guide for building modern UI

in the agentic era

Why UI is Changing

Agents should interact with us

Agents don’t just answer... they do things, and that requires UI that can
show steps, ask for approvals, and keep state.

AG-UI solves this! It creates a shared contract between agents
and UI so reasoning, state, and intent are visible and renderable.

Text is not enough

Chat was never designed for interaction, only conversation.

A2UI lets agents return interactive UI via structured JSON that the
client can reliably render into native components.

Traditional UI assumes that the backend decides, the
frontend renders, and the user clicks → waits → clicks again.

Agents break this model.

LLMs can generate UIs

The UI layer can now be created on demand (per user intent), instead of
being fully pre-designed for every workflow.

MCP Apps lets agents return external mini-apps (a literal
container that has prebuilt UI in it)

New capabilities and types of apps

Apps are shifting from “screens you navigate” to “outcomes you
request,” where workflows are assembled dynamically by agents
across tools and data.

CopilotKit solves this! You own the UI components, but
CopilotKit handles Agent-UI loops, action wiring, readable state,
human-in-the-loop control and more.

This is how you turn an agent UI
from simple demo to real fullstack

agentic app.

What is Generative UI

The Agent plays a role in:

Determining what
appears on the screen

How information 
is structured

And in some cases,
how the layout is
composed

As agents reason and act, the UI becomes a dynamic artifact
of the system... not a static screen.

Generative UI refers to any user interface that is partially or fully
produced by an AI agent, rather than authored exclusively by human
designers and developers.

The core idea:

As agents become more capable, an agentic application's UI itself
becomes more of a dynamic output of the system - able to adapt,
reorganize, and respond to user intent and application context.

Note: This can be done in very different ways, each with its own tradeoffs…
(more on next page)

3 Types of Generative UI

Ecosystem Mapping
No single approach is superior. The best choice depends on your apps priorities,
surfaces, and UX philosophy.

Approach Examples Strengths Weaknesses

Static AG-UI, CopilotChat,
useAgent

Fidelity, reliability,
brand control

Engineering intensive,
linear growth

Declarative Open-JSON-UI,
A2UI

Balanced, scalable,
multi-renderer

Limited full
customization

Open-Ended MCP Apps Unlimited
creativity

Hard to secure, web-
first

Generative UI approaches fall into three broad categories, each with distinct
tradeoffs in developer experience, UI freedom, adaptability, and long-term
maintainability.

Some Generative UI Specifications have added richness (and confusion) to
generative UIs… such as , , and . MCP Apps Open JSON UI A2UI

Check out this generative UI to see the differences!interactive ‘playground’

Types of Generative UI

Static

UI is chosen from a fixed set
of hand‑built components.

Declarative

A structured UI specification
(cards, lists, forms, widgets)
is used between agent and
frontend.

Open-Ended

Arbitrary UI (HTML, iframes,
free‑form content is passed
between agent and
frontend.

Any of the types can be controlled by the app programmer, or left up to the agent
to define.

https://go.copilotkit.ai/mcp-apps
https://json-schema.org/
https://www.copilotkit.ai/ag-ui-and-a2ui
https://go.copilotkit.ai/generative-ui-playground

Application Surfaces

Chat (Threaded Interaction)

Slack-like conversational interface where the
app brokers each turn. Generative UI appears
inline as cards, blocks, or tool responses.

Examples: Slack bots, Intercom AI Agent,
GitHub Copilot Chat, Notion AI Chat.

Chat+ (Co‑Creator Workspace)

A side‑by‑side or multi-pane layout: chat in
one pane, a dynamic canvas in another. The
canvas becomes a shared working space
where agent‑generated UI appears and
evolves.

Examples: Figma AI, Notion AI workspace,
Google Workspace Duet side‑panel

Chatless (Generative UI
integrated into application UI)

The agent doesn't talk directly to the user.
Instead, it communicates with the application
through APIs, and the app renders generative
UI from the agent as part of its native
interface.

Examples: Microsoft 365 Copilot (inline
editing), Linear Insights, HubSpot AI Assist

Freedom of Expression

Generative UI spans a spectrum of expressive freedom: fixed
components → declarative UI → fully open-ended HTML

Who has Control

Are UI decisions made by the agent or constrained by the
developer?

Attributes of Generative UI

Static Generative UI

Static generative UI allows engineers to hand-craft specific visual components, and
agents simply decide which of those components to use. The agent does not generate
arbitrary UI; instead, it maps generated data to existing UI components.

In this model, the front end defines every detail of the experience- the layouts, styles,
interaction patterns, and constraints. The backend or agent contributes information and
intent, but the rendering ultimately comes from a predefined set of components.

Why teams use it:

 Guarantees high visual polish and
consistency

Ideal for high-traffic, mission-critical
surfaces where predictability matters

Tradeoffs:

The frontend codebase grows
proportionally to the number of
agent capabilities

The more use cases, the more
components you must build and
maintain

Example: Using CopilotChat with AG-UI

The agent defines tools, AG-UI handles
the connection, and the frontend renders
predefined components.

Declarative Generative UI

Declarative generative UI balances structure and flexibility by having agents return a
structured specification rather than arbitrary UI code. Instead of free-form HTML,
agents emit a well-defined schema — such as a collection of cards, lists, forms, or
widgets defined by a declarative standard.

This approach preserves consistency while giving agents far greater expressive power
than purely static component libraries. It creates a middle ground where UI is not
handcrafted for each use case, but is also not fully free-form.

Why teams use it:

Supports a wide range of use cases
without requiring custom
components for each

Developers can render the same
spec across multiple frameworks
(React, mobile, desktop…)

Tradeoffs:

Custom UI patterns may not be
possible

Visual differences can still occur if
specs are interpreted differently

Example: Using Open-JSON-UI

The agent returns a structured spec (like a Card) that the frontend interprets and
renders consistently.

Open-Ended Generative UI

Open-ended generative UI represents the opposite end of the spectrum. Here, agents
generate complete UI surfaces — often as HTML, iframes, or free-form markup. Instead
of choosing from predefined components, the agent can respond with an entire UI
payload that the frontend simply displays.

This approach provides unparalleled flexibility of expression. Agents can render a
calendar, a custom table, an animated visualization, or an interactive HTML widget, either
generated by the LLM, or predefined by an application developer.

Why teams use it:

Any type of UI can be part of an agent
response, whether predefined by the
programmer or generated by the
agent

Minimal coupling between frontend
code and agent behavior

Supports rapid prototyping and
complex workflows without frontend
engineering cycles

Tradeoffs:

 Security and performance
considerations when rendering
arbitrary content

Typically web-first and difficult to
port to native environments

Styling consistency and brand
alignment become challenging

Example: Using MCP-UI & ChatGPT Apps SDK

The agent returns complete HTML/iframes that render arbitrary UI, giving maximum
flexibility.

A new application paradigm

Once UI shifts, backend architecture, permissions, and metrics
must shift too. Agentic UI reshapes how software is designed end-
to-end.

Usefulness vs. impressiveness

Strong models don’t matter if people can’t operate or trust them.
UI is now the main limiter of whether AI delivers real value or stays a
demo.

Automation vs. delegation (agent-user
collaboration is most efficient)

Automation still requires users to drive step-by-step. Delegation
only works when UI lets users set goals, monitor plans, and
intervene safely.

Why Does Generative UI Matter?

CopilotKit as the Central Enabler 
and How to Build with Generative UI

The AG-UI protocol is designed to support the full spectrum of generative UI
techniques while adding important capabilities that unify them.

AG-UI integrates seamlessly with all types: static, declarative, and open-ended
generative UI approaches.

But AG-UI adds shared primitives — interaction models, context synchronization,
event handling, a common state framework — that standardize how agents and UIs
communicate across all surface types.

CopilotKit works with any generative UI, and uses AG-UI to connect the
agent to the frontend.

CopilotKit is the home for building agentic apps with generative UI that mix
and match all these elements! Plug and play any agent framework, protocol,
spec and more within minutes.

This repo is a great place to learn — including tons of different resources
such as demos, tutorials, videos, code snippets, and more.

How to Get Started

Check out this newly released educational repo
on Generative UI, updated for 2026

https://go.copilotkit.ai/generative-ui-repo

https://go.copilotkit.ai/generative-ui-repo
https://go.copilotkit.ai/generative-ui-repo

Found this
useful?

Repost It
to help one person

in your network

