
The Agentic
Protocol

Landscape
Understanding AG-UI, MCP, A2A, UI Specs,

and how to build agentic applications

Swipe to next page

Why Agentic Protocols Matter

How do these protocols work and help?

Interoperability →
agents, apps, and
tools speak a
shared format.

Transparency →

open standards
instead of
proprietary SDKs.

Reusability →

modular, composable
building blocks for
the ecosystem.

Agentic Protocols

AG-UI MCP A2A

AI Agents are becoming the place where user intent turns into action. But
how do they connect and communicate with the rest of the ecosystem?

Protocols

Agentic Protocols are the language of interoperability
between models, tools, apps and users.

Although protocols make agents compatible,  
the application layer makes them collaborative.

(more on this later)

The Current Established

Agentic Protocol Ecosystem

The agentic ecosystem is rapidly organizing around a family of
open, complementary protocols, each addressing a distinct layer.

You can connect your application to agents directly via AG-UI,
MCP, and A2A.

These protocols are not competitors, but complements,
forming a common language for agents, apps, and users.

Adopted Standards

Protocol Maintainer Purpose

MCP (Model
Context Protocol)

Anthropic / 
Open Source

Defines structured context/tool
access between models and clients.

AG-UI (Agent-User
Interaction)

CopilotKit / 
Open Source

Connects agentic backends and
agentic frontends.

A2A (Agent-to-Agent) Google / 
Open Source

Enables secure messaging and
coordination between agents from
different frameworks.

Handshakes Powering the Ecosystem

AG-UI MCP / A2A

AG-UI turns low-level protocol interoperability into application and human-level
collaboration.

These handshakes expose protocol activity to users:

AG-UI ↔ MCP → visualize tool outputs

AG-UI ↔ A2A → visualize multi-agent collaboration

Read more: AG-UI Protocol Docs | Connect MCP Servers | A2A → Frontend

MCP A2A

Function: A2A doesn’t let one agent use another agent’s MCP tools directly. Instead, it
allows agents to negotiate, exchange goals, or delegate tasks, and each agent can
then use its own MCP connections to act.

Outcome: Enables multi-agent collaboration, where agents coordinate and share
outcomes, not shared tool access, but shared intent and coordination across
systems.

Read more: MCP ↔ A2A Handshake

TOOLS

AG ENTS

USERs

AG ENT

AG-UI

MCP

A2A

https://docs.copilotkit.ai/ag-ui-protocol
https://docs.copilotkit.ai/connect-mcp-servers
https://docs.copilotkit.ai/a2a-protocol
https://a2aprotocol.ai/docs/guide/a2a-vs-mcp

Parts of the Ecosystem

The ecosystem has different parts- each defining how agents interact
with users, tools, other agents, and UI.

Type Agentic Protocol Purpose

Agent ↔ User
Interaction

AG-UI (Agent-User 
Interaction Protocol)

The open, event-based standard that connects
agentic backends/frontends, enabling

real-time, multimodal, interactive experiences.

Agent ↔ Tools 
& Data

MCP (Model Context 
Protocol)

Open standard (originated by Anthropic) that
lets agents securely connect to external

systems- tools, workflows, and data sources.

Agent ↔ Agent A2A Defines how agents coordinate and share work
across distributed agentic systems.

Type Generative UI Spec Purpose

Agent ↔
Declarative UI

 MCP UI (Anthropic)

Open-JSON-UI

(OpenAl)

Declarative, LLM-friendly generative UI specs
that define what to render and how to structure
agent responses visually.

Unified Takeaway

AG-UI connects agentic apps to agentic backends.

MCP connects agents to tools and data.

A2A connects agents to other agents.

MCP-UI, and Open-JSON-UI let agents return UIs.

Agent-User Interaction Protocol

AI agents are moving beyond chatbots and into products.

This is what’s becoming known as the application layer - where users and
agents collaborate directly inside interfaces.

What is AG-UI’s role?
Standardizing how humans & agents collab inside real apps

When intelligence needs to live inside an app (updating UI state, responding
to user actions, showing reasoning steps, or streaming outputs into a
sidebar) you need an application-level protocol → AG-UI

Why should I care about AG-UI?

It’s the fastest-growing protocol in the agent-user domain

Every major platform is moving toward AI-native UX!
Think: Agent as chatbot → Agent as co-worker inside my app

Clients

Supported

React apps

Angular APPS Mobile

And More

Slack Email

Voice Apps SMS/Whatsapp

AG-UI

Agents Frameworks

Google ADK

Amazon Bedrock

OpenAI Agents SDK

AG-UI: a horizontal “N-M” Protocol

AG-UI and Generative UI Specs

Several recently released specs have enabled agents to return
generative UI, increasing the power and flexibility of the Agent ↔ User
conversation.

MCP-UI and Open-JSON-UI are both generative UI specifications.
Generative UIs allow agents to respond to users not only with text but
also with dynamic UI components.

AG-UI is not a generative UI specification!

It’s an Agent-User Interaction protocol that provides the bi-
directional runtime connection between an agentic backend &
frontend.

AG-UI natively supports all of the generative UI specs below and allows
developers to define their own custom generative UI standards as well.

Current Gen UI Specs Supported by AG-UI
Specification Origin / Maintainer Purpose

Open-JSON-UI OpenAl
An open standardization of
OpenAl's internal declarative
Generative Ul schema.

MCP-UI Microsoft + Shopify

 A fully open, iframe-based
Generative UI standard
extending MCP for user-facing
experiences.

Mixing and Matching

CopilotKit lets developers connect to any of these protocols directly or in combination.

AG-UI also includes handshakes with both MCP and A2A, ensuring smooth
interoperability across the full agentic stack.

This means that if your host agent connects to subagents using MCP or A2A, their
UI properties can be propagated all the way through to the user-facing
application- while preserving full security, policy, and observability controls.

AG-UI is a General Purpose Bi-directional

Agentic Frontend ↔ Agentic Backend Connection

Your Application
user interaction and
collaboration?

You are absolutely right!

AG-UI and MCP-UI work great tigether.

What features do AG-UI and MCP-UI affer? How can AG-UI can...

Type message

Agentic Application

MCP

A2A Mash

Google ADK

LLMs

and more...

Your agent framework

of choice

Agentic Backend

“You are absolutely right!

AG-UI and MCP-UI work gre...”

You can think of AG-UI as the “kitchen sink” protocol - informed by bottom-up,
real-world needs for building best-in-class agentic applications.

Common Misconceptions

This leads us to the next page:  
Ecosystem Overview

Misconception:

AG-UI and MCP-UI are
competing standards for
agent UIs.

Reality:

Not at all. They serve completely different purposes.
MCP-UI is a generative UI specification that defines what
the agent should render visually. AG-UI, on the other
hand, is an Agent-User Interaction protocol that defines
how agents become interactive and stateful inside the
product.

Misconception:

Protocols are competing
for dominance.

Reality:

They’re complementary - each solves a different part of
the agent lifecycle. The goal is interoperability, not
exclusivity.

Misconception:

Agentic Protocols are just
APIs with new branding.

Reality:

APIs connect products; protocols connect ecosystems.
They define shared schemas, security, and
communication rules so independent systems can work
together without central control.

Misconception:

AG-UI is a visualization
spec like MCP-UI.

Reality:

AG-UI is a User Interaction protocol, not a UI spec. It
powers the real-time, bi-directional connection between
agents and users, enabling agents to stay stateful,
multimodal, and interactive inside the app.

Misconception:

CopilotKit replaces these
agentic protocols.

Reality:

CopilotKit sits above them as the Agentic Application
Framework. It unifies AG-UI, MCP, and A2A under one
developer-ready layer- so you can build, connect, and
operate agentic apps using any or all agentic protocols.

LLMsAG ENT FRAMEWORKS

USER-FACING APPs

AG-UIMCP A2A

AGENTIC

FRONTEND

INterACTION

protoCOLS

AGENTIC

BACKEND

Ecosystem Overview

CopilotKit sits above these protocols and generative UI specs as the Agentic
Application Framework- an open-source and cloud platform that unifies the stack,
enabling developers to build and operate production-grade agentic applications
with confidence.

CopilotKit uses any or all of the above, enabling developers to build rich user-
facing agentic apps connected to any agentic backend through any of the
Agent Interaction Protocols, and using any of the Generative UI Specs.

CopilotKit + AG-UI

The future is multi-protocol composability

Agents will speak many protocols at once.

CopilotKit

CopilotKit is the Agentic
Application Framework -
everything developers need
to integrate AI agents into
their user-facing apps.

CopilotKit-powered agentic
apps can connect to any AI
agent, either directly or
through the Agentic protocol
of their choice, including AG-
UI, MCP, and A2A.

AG-UI

The Agent–User Interaction
protocol is the general-
purpose, bi-directional
connection between a user-
facing application and any
agentic backend.

CopilotKit & AG-UI partners invite builders,
protocol authors, and open-source
contributors to shape how agents and humans
interact.

AG-UI is fully open source and built in active collaboration with the
broader protocol community.

Want to start building agentic applications?

Check out ag-ui.com

https://docs.ag-ui.com/introduction

More Resources

AG-UI
Repo: github.com

Overview: docs.ag-ui.com

MCP
Repo: github.com

Site: modelcontextprotocol.io

Overview: modelcontextprotocol.io

Spec: modelcontextprotocol.io

MCP-UI
Repo: github.com

Site: mcpui.dev

Overview: github.com

Spec: github.com

A2A
Repo: github.com

Site: a2a-protocol.org

Overview: github.com

Spec: a2a-protocol.org

https://github.com/ag-ui-protocol/ag-ui
https://docs.ag-ui.com/introduction
https://github.com/modelcontextprotocol/modelcontextprotocol
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/specification/2025-06-18
https://github.com/idosal/mcp-ui
https://mcpui.dev/
https://github.com/idosal/mcp-ui/blob/main/README.md
https://github.com/idosal/mcp-ui/blob/main/docs/README.md
https://github.com/a2aproject/A2A
https://a2a-protocol.org/latest/
https://github.com/a2aproject/A2A/blob/main/README.md
https://a2a-protocol.org/latest/specification/

Found this
useful?

Repost It
to help one person

in your network

